论文标题
属属的复合物量子Chern- -simons理论
Genus-one complex quantum Chern--Simons theory
论文作者
论文摘要
我们考虑了Chern-Simons理论的几何定量,用于封闭的属一表面和半神经复合物。首先,我们介绍了Kähler定量中Hitchin连接的天然络合类似物,极性来自扁平连接模量空间的Nonabelian Hodge Hyper-Kähler几何形状,从而补充了Witten的实现方法。然后,我们考虑了Witten的连接,并使用复杂的Hitchin连接使用Bargmann在模量空间上的极化部分上的变换来识别它。
We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in Kähler quantisation, with polarisations coming from the nonabelian Hodge hyper-Kähler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.