论文标题

照明估算挑战:过去两年的经验

Illumination Estimation Challenge: experience of past two years

论文作者

Ershov, Egor, Savchik, Alex, Semenkov, Ilya, Banić, Nikola, Koscević, Karlo, Subašić, Marko, Belokopytov, Alexander, Li, Zhihao, Terekhin, Arseniy, Senshina, Daria, Nikonorov, Artem, Qian, Yanlin, Buzzelli, Marco, Riva, Riccardo, Bianco, Simone, Schettini, Raimondo, Lončarić, Sven, Nikolaev, Dmitry

论文摘要

照明估计是计算颜色稳定性的重要步骤,这是现代数码相机各种图像处理管道的核心部分之一。具有准确可靠的照明估计对于减少照明对图像颜色的影响很重要。为了激发新思想的产生和在该领域的新算法的发展,进行了第二个照明估计挑战〜(IEC \#2)。测试挑战方面的方法的主要优点而不是在某些已知数据集中进行测试的事实,即挑战测试图像的地面真相照明尚不清楚,直到提交结果为止,这阻止了任何可能偏置的潜在超参数调谐。 挑战有多个曲目:一般,室内和两千倒,每个曲目都集中在场景的不同参数上。它的其他主要功能是使用相同的相机传感器模型拍摄的新的大型图像数据集(约5000个),每张图像随附的手动标记,各种各样的内容,在许多国家 /地区在许多国家 /地区拍摄的场景都通过使用SpyderCube校准对象提取了各种各样的照明,以及使用Cube+ DataSet中的图像的竞赛式标记,该图像是在IEC中使用的。 本文重点介绍了过去两个挑战的描述,即在每条曲目中赢得的算法,以及根据在第1和第二挑战中获得的结果得出的结论,这些结论对于将来的未来发展可能很有用。

Illumination estimation is the essential step of computational color constancy, one of the core parts of various image processing pipelines of modern digital cameras. Having an accurate and reliable illumination estimation is important for reducing the illumination influence on the image colors. To motivate the generation of new ideas and the development of new algorithms in this field, the 2nd Illumination estimation challenge~(IEC\#2) was conducted. The main advantage of testing a method on a challenge over testing in on some of the known datasets is the fact that the ground-truth illuminations for the challenge test images are unknown up until the results have been submitted, which prevents any potential hyperparameter tuning that may be biased. The challenge had several tracks: general, indoor, and two-illuminant with each of them focusing on different parameters of the scenes. Other main features of it are a new large dataset of images (about 5000) taken with the same camera sensor model, a manual markup accompanying each image, diverse content with scenes taken in numerous countries under a huge variety of illuminations extracted by using the SpyderCube calibration object, and a contest-like markup for the images from the Cube+ dataset that was used in IEC\#1. This paper focuses on the description of the past two challenges, algorithms which won in each track, and the conclusions that were drawn based on the results obtained during the 1st and 2nd challenge that can be useful for similar future developments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源