论文标题
IGOS ++:通过双边扰动进行的集成梯度优化显着性
iGOS++: Integrated Gradient Optimized Saliency by Bilateral Perturbations
论文作者
论文摘要
深层网络的黑框性质为“为什么”的解释做出了一些解释,它们使某些预测极具挑战性。显着图是缓解此问题的最广泛使用的本地解释工具之一。生成显着图的主要方法之一是在输入维度上优化掩码,以便网络的输出受掩模最大的影响。但是,先前的工作仅通过从输入中删除证据来研究这种影响。在本文中,我们提出了IGOS ++,这是一个生成显着图的框架,该框架通过删除或仅保留一小部分输入来优化,以更改黑盒系统的输出。此外,我们建议在优化中添加双边总变化项,以改善显着性图的连续性,尤其是在高分辨率和薄物体部分下。将IGO ++与最新显着图方法进行比较的评估结果显示,在定位人类直接解释的显着区域方面有显着改善。我们在从X射线图像中分类CoVID-19情况下使用IGOS ++,发现有时CNN网络在执行分类时将CNN网络过度适用于X射线图像上的字符。通过数据清洁解决此问题可显着提高分类器的精度和召回。
The black-box nature of the deep networks makes the explanation for "why" they make certain predictions extremely challenging. Saliency maps are one of the most widely-used local explanation tools to alleviate this problem. One of the primary approaches for generating saliency maps is by optimizing a mask over the input dimensions so that the output of the network is influenced the most by the masking. However, prior work only studies such influence by removing evidence from the input. In this paper, we present iGOS++, a framework to generate saliency maps that are optimized for altering the output of the black-box system by either removing or preserving only a small fraction of the input. Additionally, we propose to add a bilateral total variation term to the optimization that improves the continuity of the saliency map especially under high resolution and with thin object parts. The evaluation results from comparing iGOS++ against state-of-the-art saliency map methods show significant improvement in locating salient regions that are directly interpretable by humans. We utilized iGOS++ in the task of classifying COVID-19 cases from x-ray images and discovered that sometimes the CNN network is overfitted to the characters printed on the x-ray images when performing classification. Fixing this issue by data cleansing significantly improved the precision and recall of the classifier.