论文标题

可卡因成瘾的机器学习分析,由DAT,SERT和基于网络的Interactome网络告知

Machine learning analysis of cocaine addiction informed by DAT, SERT, and NET-based interactome networks

论文作者

Feng, Hongsong, Gao, Kaifu, Chen, Dong, Robison, Alfred J, Ellsworth, Edmund, Wei, Guo-Wei

论文摘要

可卡因成瘾是长期使用可卡因引起的一种社会心理障碍,并在世界范围内导致大量数量死亡。尽管努力了数十年,但食品药品监督管理局(FDA)尚未批准用于治疗可卡因依赖性的药物。可卡因依赖性是神经系统的,涉及相互作用组中的许多相互作用蛋白。其中,多巴胺转运蛋白(DAT),5-羟色胺转运蛋白(SERT)和去甲肾上腺素转运蛋白(NET)是三个主要目标。这些靶标中的每一个都有大型蛋白质蛋白质相互作用(PPI)网络,必须在抗可卡因成瘾药物发现中考虑。这项工作介绍了可卡因成瘾的DAT,SERT和NET INTERATOME网络知识的机器学习/深度学习(ML/DL)研究。我们在DAT,SERT和净PPI网络中收集和分析61个蛋白质靶标,这些蛋白质具有足够的现有抑制剂数据集。利用自动编码器和其他ML算法,我们用115,407个抑制剂为这些靶标建立了ML/DL模型,以预测药物重新利用潜力和可能的副作用。我们进一步筛选它们的吸收,分布,代谢和排泄和毒性(ADMET)特性,以寻找抗可卡因成瘾的几乎最佳铅。我们的方法为基于人工智能(AI)的抗可卡因成瘾铅发现建立了系统方案。

Cocaine addiction is a psychosocial disorder induced by the chronic use of cocaine and causes a large of number deaths around the world. Despite many decades' effort, no drugs have been approved by the Food and Drug Administration (FDA) for the treatment of cocaine dependence. Cocaine dependence is neurological and involves many interacting proteins in the interactome. Among them, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) are three major targets. Each of these targets has a large protein-protein interaction (PPI) network which must be considered in the anti-cocaine addiction drug discovery. This work presents DAT, SERT, and NET interactome network-informed machine learning/deep learning (ML/DL) studies of cocaine addiction. We collect and analyze 61 protein targets out 460 proteins in the DAT, SERT, and NET PPI networks that have sufficient existing inhibitor datasets. Utilizing autoencoder and other ML algorithms, we build ML/DL models for these targets with 115,407 inhibitors to predict drug repurposing potentials and possible side effects. We further screen their absorption, distribution, metabolism, and excretion, and toxicity (ADMET) properties to search for nearly optimal leads for anti-cocaine addiction. Our approach sets up a systematic protocol for artificial intelligence (AI)-based anti-cocaine addiction lead discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源