论文标题

自适应单图像

Adaptive Single Image Deblurring

论文作者

Suin, Maitreya, Purohit, Kuldeep, Rajagopalan, A. N.

论文摘要

本文解决了动态场景浮肿的问题。尽管端到端完全卷积的设计最近在非均匀运动中的最新动态推动了最先进的设计,但他们的性能 - 复杂性权衡仍然是最佳的。现有方法通过简单地增加了通用卷积层的数量,即内核大小,这带来了模型大小和推理速度的增加负担。在这项工作中,我们提出了一种有效的像素自适应和特征专注的设计,用于处理不同图像内和跨不同图像内部和跨不同图像的大型模糊变化。我们还提出了一个有效的内容感知的全局本地滤波模块,该模块不仅通过考虑像素的全局依赖性,而且可以动态使用相邻的像素来显着提高性能。我们使用由上述模块组成的补丁层次结构架构,该体系结构隐含地发现输入图像中存在的模糊中的空间变化,进而执行中间特征的局部和全局调制。与先前的ART在脱张基准上进行了广泛的定性和定量比较,证明了拟议网络的优越性。

This paper tackles the problem of dynamic scene deblurring. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in non-uniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Existing approaches achieve a large receptive field by a simple increment in the number of generic convolution layers, kernel-size, which comes with the burden of the increase in model size and inference speed. In this work, we propose an efficient pixel adaptive and feature attentive design for handling large blur variations within and across different images. We also propose an effective content-aware global-local filtering module that significantly improves the performance by considering not only the global dependencies of the pixel but also dynamically using the neighboring pixels. We use a patch hierarchical attentive architecture composed of the above module that implicitly discover the spatial variations in the blur present in the input image and in turn perform local and global modulation of intermediate features. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate the superiority of the proposed network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源