论文标题
自适应图像介绍
Adaptive Image Inpainting
论文作者
论文摘要
图像介绍方法最近通过使用深层神经网络显示出显着改善。但是,许多这些技术通常会产生扭曲的结构或模糊纹理与周围区域不一致。这个问题植根于编码层的无效性,以建立失踪区域的完整而忠实的嵌入。为了解决这个问题,两阶段的方法部署了两个单独的网络,以对贴有图像的粗略估算。一些方法利用手工制作的功能(例如边缘或轮廓)来指导重建过程。由于多个发电机网络,手工制作的功能的能力有限以及对地面真相中存在的信息的次优利用,这些方法具有巨大的计算开销。在这些观察结果的推动下,我们提出了一种基于蒸馏的方法的方法,在该方法中,我们以适应性的方式为编码器层提供了直接的特征级别监督。我们部署交叉和自我蒸馏技术,并讨论需要在编码器中专用完成块以实现蒸馏目标的必要性。我们对多个数据集进行了广泛的评估以验证我们的方法。
Image inpainting methods have shown significant improvements by using deep neural networks recently. However, many of these techniques often create distorted structures or blurry textures inconsistent with surrounding areas. The problem is rooted in the encoder layers' ineffectiveness in building a complete and faithful embedding of the missing regions. To address this problem, two-stage approaches deploy two separate networks for a coarse and fine estimate of the inpainted image. Some approaches utilize handcrafted features like edges or contours to guide the reconstruction process. These methods suffer from huge computational overheads owing to multiple generator networks, limited ability of handcrafted features, and sub-optimal utilization of the information present in the ground truth. Motivated by these observations, we propose a distillation based approach for inpainting, where we provide direct feature level supervision for the encoder layers in an adaptive manner. We deploy cross and self distillation techniques and discuss the need for a dedicated completion-block in encoder to achieve the distillation target. We conduct extensive evaluations on multiple datasets to validate our method.