论文标题

使用特征指导恢复图像恢复

Image Restoration using Feature-guidance

论文作者

Suin, Maitreya, Purohit, Kuldeep, Rajagopalan, A. N.

论文摘要

图像修复是从退化版本中恢复干净图像的任务。在大多数情况下,降解在空间上是变化的,它需要恢复网络才能定位和恢复受影响的区域。在本文中,我们提出了一种新方法,适用于处理受实际发生的伪像(例如诸如Blur,Rain-Treatss)影响的图像中特定图像和空间变化的性质。我们将恢复任务分解为降级定位的两个阶段,并降低了区域指导的恢复,这与直接学习降级和干净图像之间的映射的现有方法不同。我们的前提是使用降解蒙版预测的辅助任务来指导修复过程。我们证明了为这项辅助任务训练的模型包含重要区域知识,可以利用细心的知识蒸馏技术来利用这些知识来指导恢复网络的培训。此外,我们提出了面具引导的卷积和全球环境聚合模块,该模块仅着重于恢复退化的区域。通过对强质基础的显着改善,证明了拟议方法的有效性。

Image restoration is the task of recovering a clean image from a degraded version. In most cases, the degradation is spatially varying, and it requires the restoration network to both localize and restore the affected regions. In this paper, we present a new approach suitable for handling the image-specific and spatially-varying nature of degradation in images affected by practically occurring artifacts such as blur, rain-streaks. We decompose the restoration task into two stages of degradation localization and degraded region-guided restoration, unlike existing methods which directly learn a mapping between the degraded and clean images. Our premise is to use the auxiliary task of degradation mask prediction to guide the restoration process. We demonstrate that the model trained for this auxiliary task contains vital region knowledge, which can be exploited to guide the restoration network's training using attentive knowledge distillation technique. Further, we propose mask-guided convolution and global context aggregation module that focuses solely on restoring the degraded regions. The proposed approach's effectiveness is demonstrated by achieving significant improvement over strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源