论文标题

隐性代表稀疏的世袭家庭

Implicit representation of sparse hereditary families

论文作者

Alon, Noga

论文摘要

对于一个世袭的图表$ \ ff $,令$ \ ff_n $表示$ n $ Vertices上$ \ ff $的所有成员的集合。 $ \ ff $的速度是函数$ f(n)= | \ ff_n | $。 $ \ ff_n $的尺寸$ \ ell(n)$的隐式表示形式是将$ \ ell(n)$位的标签分配给\ ff_n $中任何给定的图形$ g \ in \ ff_n $的每个顶点的标签,因此,可以通过标签确定任何一对顶点之间的邻接性。 Bonamy,Esperet,Groenland和Scott证明,对于任何遗传家庭$ \ ff $,具有$ \ ff_n $的最小大小,$ 2^{ω(n^2)} $是$(1+o(1+o(1+o(1))\ log_2 | \ ff_n |/n〜(1+o(1+o(1+o(1+o(1+o(1), Hatami和Hatami的最新结果表明,对于非常稀疏的遗传家庭而言,情况有很大不同。他们表明,在每$δ> 0 $中,都有遗传图$ 2^{o(n \ log n)} $不接受大小小于$ n^{1/2-δ} $的隐式表示。在本说明中,我们表明,即使是温和的速度约束,也可以确保大小$ o(n^c)$的隐性表示。具体而言,我们证明,每$ \ eps> 0 $都有一个整数$ d \ geq 1 $,这样,如果$ \ ff $是一个具有速度$ f(n)\ leq 2^{(1/4- \ eps)$ f(n)\ eps n^2} $ then $ \ ff_n $ then $ \ ff_n $的代表$ o(n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^n^nogy $ o)此外,对于每一个整数$ d> 1 $,都有一个遗传家庭,这是对数因素的紧张。

For a hereditary family of graphs $\FF$, let $\FF_n$ denote the set of all members of $\FF$ on $n$ vertices. The speed of $\FF$ is the function $f(n)=|\FF_n|$. An implicit representation of size $\ell(n)$ for $\FF_n$ is a function assigning a label of $\ell(n)$ bits to each vertex of any given graph $G \in \FF_n$, so that the adjacency between any pair of vertices can be determined by their labels. Bonamy, Esperet, Groenland and Scott proved that the minimum possible size of an implicit representation of $\FF_n$ for any hereditary family $\FF$ with speed $2^{Ω(n^2)}$ is $(1+o(1)) \log_2 |\FF_n|/n~(=Θ(n))$. A recent result of Hatami and Hatami shows that the situation is very different for very sparse hereditary families. They showed that for every $δ>0$ there are hereditary families of graphs with speed $2^{O(n \log n)}$ that do not admit implicit representations of size smaller than $n^{1/2-δ}$. In this note we show that even a mild speed bound ensures an implicit representation of size $O(n^c)$ for some $c<1$. Specifically we prove that for every $\eps>0$ there is an integer $d \geq 1$ so that if $\FF$ is a hereditary family with speed $f(n) \leq 2^{(1/4-\eps)n^2}$ then $\FF_n$ admits an implicit representation of size $O(n^{1-1/d} \log n)$. Moreover, for every integer $d>1$ there is a hereditary family for which this is tight up to the logarithmic factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源