论文标题

Rformer:基于变压器的生成对抗网络,用于在新的临床基准上进行真实的底面图像修复

RFormer: Transformer-based Generative Adversarial Network for Real Fundus Image Restoration on A New Clinical Benchmark

论文作者

Deng, Zhuo, Cai, Yuanhao, Chen, Lu, Gong, Zheng, Bao, Qiqi, Yao, Xue, Fang, Dong, Zhang, Shaochong, Ma, Lan

论文摘要

眼科医生已经使用底面图像来筛查和诊断眼部疾病。但是,不同的设备和眼科医生对眼底图像的质量构成了很大的变化。低质量(LQ)降解的底面图像很容易导致临床筛查中的不确定性,并且通常会增加误诊的风险。因此,真正的遗嘱图像恢复值得研究。不幸的是,到目前为止,尚未为此任务探索真正的临床基准。在本文中,我们研究了真正的临床底面图像恢复问题。首先,我们建立了一个临床数据集,实际的眼底(RF),包括120个低质量和高质量(HQ)图像对。然后,我们提出了一个新型的基于变压器的生成对抗网络(RFormer),以恢复临床眼底图像的实际退化。我们网络中的关键组成部分是基于窗口的自我发电块(WSAB),它捕获了非本地自相似性和远距离依赖性。为了产生更令人愉悦的结果,引入了基于变压器的鉴别器。我们临床基准的广泛实验表明,所提出的RFORMER明显优于最新方法(SOTA)方法。此外,诸如血管分割和视盘/杯子检测等下游任务的实验表明,我们提出的RFORMER有益于临床底面图像分析和应用。数据集,代码和模型可在https://github.com/dengzhuo-ai/real-fundus上公开获取

Ophthalmologists have used fundus images to screen and diagnose eye diseases. However, different equipments and ophthalmologists pose large variations to the quality of fundus images. Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis. Thus, real fundus image restoration is worth studying. Unfortunately, real clinical benchmark has not been explored for this task so far. In this paper, we investigate the real clinical fundus image restoration problem. Firstly, We establish a clinical dataset, Real Fundus (RF), including 120 low- and high-quality (HQ) image pairs. Then we propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images. The key component in our network is the Window-based Self-Attention Block (WSAB) which captures non-local self-similarity and long-range dependencies. To produce more visually pleasant results, a Transformer-based discriminator is introduced. Extensive experiments on our clinical benchmark show that the proposed RFormer significantly outperforms the state-of-the-art (SOTA) methods. In addition, experiments of downstream tasks such as vessel segmentation and optic disc/cup detection demonstrate that our proposed RFormer benefits clinical fundus image analysis and applications. The dataset, code, and models are publicly available at https://github.com/dengzhuo-AI/Real-Fundus

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源