论文标题

硼芳烃冷却基板上的氮化炮器设备的深度电势仿真模拟

Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates

论文作者

Wu, Jing, Zhou, E, Huang, An, Zhang, Hongbin, Hu, Ming, Qin, Guangzhao

论文摘要

高效散热对于高功率密度电子产品起关键作用。超高热电导率硼(BAS,1300 W M-1K-1)冷却底物的实验合成已经实现了宽带氮化凝剂(GAN)设备的宽带袋中半导体。但是,缺乏对跨杆界面的热传递的系统分析会阻碍实际应用。在这项研究中,通过构建准确,高效的机器学习间原子潜能,我们对Bas-Gan异质结构进行了多尺度模拟。实现了265 MW M-2K-1的超高界面热电导(ITC),这是BAS和GAN匹配的晶格振动。此外,晶粒尺寸和边界电阻之间的竞争被揭示,尺寸从1 nm增加到100μm。这样的具有深度能力的多尺度模拟不仅促进了电子中的BAS冷却基板的实际应用,而且还为设计高级热管理系统提供了新的方法。

High-efficient heat dissipation plays critical role for high-power-density electronics. Experimental synthesis of ultrahigh thermal conductivity boron arsenide (BAs, 1300 W m-1K-1) cooling substrates into the wide-bandgap semiconductor of gallium nitride (GaN) devices has been realized. However, the lack of systematic analysis on the heat transfer across the BAs-GaN interface hampers the practical applications. In this study, by constructing the accurate and high-efficient machine learning interatomic potentials, we performed multiscale simulations of the BAs-GaN heterostructures. Ultrahigh interfacial thermal conductance (ITC) of 265 MW m-2K-1 is achieved, which lies in the well-matched lattice vibrations of BAs and GaN. Moreover, the competition between grain size and boundary resistance was revealed with size increasing from 1 nm to 100 μm. Such deep-potential equipped multiscale simulations not only promote the practical applications of BAs cooling substrates in electronics, but also offer new approach for designing advanced thermal management systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源