论文标题
带有calabi-yau分辨率的阿贝尔品种的有限商
Finite quotients of abelian varieties with a Calabi-Yau resolution
论文作者
论文摘要
令$ a $为ABELIAN品种,而$ G \ subset aut(a)$一个有限的组在编码二中自由作用。我们讨论单数商$ a/g $是否承认是卡拉比(Calabi-Yau)歧管的解决方案。虽然Oguiso在尺寸$ 3 $中构建了两个示例,但我们表明尺寸中没有$ 4 $。我们还将可能的Abelian品种$ a $在任意维度上分类。
Let $A$ be an abelian variety, and $G \subset Aut(A)$ a finite group acting freely in codimension two. We discuss whether the singular quotient $A/G$ admits a resolution that is a Calabi-Yau manifold. While Oguiso constructed two examples in dimension $3$, we show that there are none in dimension $4$. We also classify up to isogeny the possible abelian varieties $A$ in arbitrary dimension.