论文标题
通过微调影像网改善从组织病理学图像提取特征的提取
Improving Feature Extraction from Histopathological Images Through A Fine-tuning ImageNet Model
论文作者
论文摘要
由于缺乏带注释的病理图像,转移学习一直是数字病理领域的主要方法。基于Imagenet数据库的PRETREAR训练的神经网络通常用于提取“ Off the Branf”特征,在预测组织类型,分子特征和临床表现等方面取得了巨大的成功,我们可以通过预测的模型来实现巨大的成功。预测性能。我们使用了100,000个注释的结直肠癌(CRC)的图像贴片,通过TwoStep方法预审xception模型。从Finetuned Xception(FTX2048)模型中提取的特征和ImagePreted模型和ImagePreted(ImagePreted)模型(IMGNET2048)模型(IMGNET2048)模型进行了比较:(1)用于与CRC相同图像类型的组织分类,该模型用于CRC,该图像类型,该图像类型,该图像类型,该图像类型,该图像类型,该图像类型,该模型fineT fint finet fint fint finet fineT; (2)对肺腺癌(LUAD)的免疫相关基因表达和(3)基因突变的预测。使用FiveFold交叉验证进行模型性能评估。从Imagenet数据库中直接从Xpection中直接从Xpection中,预测CRC类型的Tisue类型的FTX2048提取的特征表现出明显更高的预测CRC类型的精度。特别是,FTX2048将基质的准确性从87%提高到94%。同样,来自FTX2048的特征增强了免疫相关基因塞蛋白的转录组表达的预测。对于与图像雌性有符号关系的基因,填充模型的特征不侵害了大多数基因的预测。陷入困境,来自FTX2048的雌激素改善了突变的预测,其中9个最常见的突变基因中的5个最常见的基因。
Due to lack of annotated pathological images, transfer learning has been the predominant approach in the field of digital pathology.Pre-trained neural networks based on ImageNet database are often used to extract "off the shelf" features, achieving great success in predicting tissue types, molecular features, and clinical outcomes, etc. We hypothesize that fine-tuning the pre-trained models using histopathological images could further improve feature extraction, and downstream prediction performance.We used 100,000 annotated HE image patches for colorectal cancer (CRC) to finetune a pretrained Xception model via a twostep approach.The features extracted from finetuned Xception (FTX2048) model and Imagepretrained (IMGNET2048) model were compared through: (1) tissue classification for HE images from CRC, same image type that was used for finetuning; (2) prediction of immunerelated gene expression and (3) gene mutations for lung adenocarcinoma (LUAD).Fivefold cross validation was used for model performance evaluation. The extracted features from the finetuned FTX2048 exhibited significantly higher accuracy for predicting tisue types of CRC compared to the off the shelf feature directly from Xception based on ImageNet database. Particularly, FTX2048 markedly improved the accuracy for stroma from 87% to 94%. Similarly, features from FTX2048 boosted the prediction of transcriptomic expression of immunerelated genesin LUAD. For the genes that had signigicant relationships with image fetures, the features fgrom the finetuned model imprroved the prediction for the majority of the genes. Inaddition, fetures from FTX2048 improved prediction of mutation for 5 out of 9 most frequently mutated genes in LUAD.