论文标题
功能有限的访问功能有限
Submodular Maximization with Limited Function Access
论文作者
论文摘要
我们考虑一类决策者对目标功能的访问有限的少量最大化问题。我们探讨了决策者只能观察成对信息的方案,即可以评估尺寸二大的目标函数。我们从一个负面的结果开始,只有仅使用$ k $的算法就可以保证性能优于$ k/n $。我们提供两种仅利用有关该功能的成对信息并表征其性能相对于最佳的算法,这取决于子解多函数的曲率。另外,如果子模函数具有称为条件超模块化的属性,那么我们可以提供一种纯粹基于成对信息的性能的方法。提出的算法就传统的贪婪策略提供了重要的计算加速。我们研究的副产品是引入两个新的曲率概念,即$ K $ - 摩根曲率和$ k $ - 心电图曲率。最后,我们提出了实验,以近似和时间复杂性来强调我们提出的算法的性能。
We consider a class of submodular maximization problems in which decision-makers have limited access to the objective function. We explore scenarios where the decision-maker can observe only pairwise information, i.e., can evaluate the objective function on sets of size two. We begin with a negative result that no algorithm using only $k$-wise information can guarantee performance better than $k/n$. We present two algorithms that utilize only pairwise information about the function and characterize their performance relative to the optimal, which depends on the curvature of the submodular function. Additionally, if the submodular function possess a property called supermodularity of conditioning, then we can provide a method to bound the performance based purely on pairwise information. The proposed algorithms offer significant computational speedups over a traditional greedy strategy. A by-product of our study is the introduction of two new notions of curvature, the $k$-Marginal Curvature and the $k$-Cardinality Curvature. Finally, we present experiments highlighting the performance of our proposed algorithms in terms of approximation and time complexity.