论文标题
迈向地球早期的RNA寿命:从大气中的HCN到温暖的小池塘的生物分子产生
Towards RNA life on Early Earth: From atmospheric HCN to biomolecule production in warm little ponds
论文作者
论文摘要
地球生命的起源涉及含信息分子(例如RNA)的早期出现。 RNA的基本构建块可能是由富含碳的陨石传递的,或者是通过在地球早期大气中合成氰化氢(HCN)开始的过程。在这里,我们构建了早期地球大气层的强大物理和非平衡化学模型。大气由陨石的撞击脱水提供氢,从海洋蒸发,火山二氧化碳以及底层水热通风口的甲烷以及雷电和外部UV驱动的化学产物HCN产生的甲烷。这使我们能够将HCN的雨水计算为温暖的小池塘(WLP)。然后,我们使用全面的来源和下沉的数值模型来计算由水性和紫外线驱动的化学作用的核苷酸酶,核糖和核苷酸前体(例如2-氨基氧唑)。我们发现,在4.4 bya(十亿年前),在没有渗漏的情况下,池塘中腺嘌呤浓度的限制为0.05 $μ$ m。这些浓度可以维持100多名MYR。将腺嘌呤送给WLP的陨石递送可以以2-3个数量级的浓度提供浓度的提升,但是通过紫外线分离,渗流和水解,这些促进在几个月内耗尽了。大气的早期演变主要是由于影响率下降和大气逃逸以及氧化物种的升高,例如H2O光解OH。我们的工作表明,在月球形成撞击的200 MYR之内,RNA的早期起源。
The origin of life on Earth involves the early appearance of an information-containing molecule such as RNA. The basic building blocks of RNA could have been delivered by carbon-rich meteorites, or produced in situ by processes beginning with the synthesis of hydrogen cyanide (HCN) in the early Earth's atmosphere. Here, we construct a robust physical and non-equilibrium chemical model of the early Earth atmosphere. The atmosphere is supplied with hydrogen from impact degassing of meteorites, sourced with water evaporated from the oceans, carbon dioxide from volcanoes, and methane from undersea hydrothermal vents, and in which lightning and external UV-driven chemistry produce HCN. This allows us to calculate the rain-out of HCN into warm little ponds (WLPs). We then use a comprehensive sources and sinks numerical model to compute the resulting abundances of nucleobases, ribose, and nucleotide precursors such as 2-aminooxazole resulting from aqueous and UV-driven chemistry within them. We find that at 4.4 bya (billion years ago) the limits of adenine concentrations in ponds for habitable surfaces is 0.05$μ$M in the absence of seepage. These concentrations can be maintained for over 100 Myr. Meteorite delivery of adenine to WLPs can provide boosts in concentration by 2-3 orders of magnitude, but these boosts deplete within months by UV photodissociation, seepage, and hydrolysis. The early evolution of the atmosphere is dominated by the decrease of hydrogen due to falling impact rates and atmospheric escape, and the rise of oxygenated species such as OH from H2O photolysis. Our work points to an early origin of RNA on Earth within ~200 Myr of the Moon-forming impact.