论文标题
使用正定独立内核对HSIC和距离协方差的概括
Generalization of the HSIC and distance covariance using positive definite independent kernels
论文作者
论文摘要
Hilbert-Schmidt独立标准和距离协方差是使用正定核的Kronecker乘积或有条件负面的确定核的Kronecker乘积来描述随机变量独立的方法。在本文中,我们通过使用新概念(具有积极的确定独立内核)提供独立标准来概括这两种方法。我们提供了径向核的表征,这些径向核在所有欧几里得空间上独立于阳性,并提供了几个例子。
Hilbert-Schmidt independence criterion and distance covariance are methods to describe independence of random variables using either the Kronecker product of positive definite kernels or the Kronecker product of conditionally negative definite kernels. In this paper we generalize both methods by providing an independence criteria using a new concept, of positive definite independent kernels. We provide a characterization of the radial kernels that are positive definite independent on all Euclidean spaces and we present several examples.