论文标题

石墨烯/α-MOO3异质结构中的掺杂驱动拓扑极化子

Doping-driven topological polaritons in graphene/α-MoO3 heterostructures

论文作者

Hu, Hai, Chen, Na, Teng, Hanchao, Yu, Renwen, Qu, Yunpeng, Sun, Jianzhe, Xue, Mengfei, Hu, Debo, Wu, Bin, Li, Chi, Chen, Jianing, Liu, Mengkun, Sun, Zhipei, Liu, Yunqi, Li, Peining, Fan, Shanhui, de Abajo, F. Javier García, Dai, Qing

论文摘要

控制电荷载体密度提供了一种有效的方法来触发相变并调节天然材料中的光电特性。这种方法可用于在光子系统的光学响应中诱导拓扑转变。在这里,我们预测杂交极化子的同频分散轮廓的拓扑过渡,该轮廓由由石墨烯和$α$ - $ - $ - $ - $ - 三氧化物组成的二维异质结构($α$ -MOO3)组成。通过化学改变石墨烯的掺杂水平,我们在实验上证明了北极星等频表面的轮廓拓扑,这是由于依赖掺杂的polariton杂交而从开放的形状转变为封闭形状。此外,通过更改异质结构的底物介质,分散轮廓可以进一步设计成拓扑过渡时相当扁平的形状,从而支持可调的极性载体载物,并提供了局部控制拓扑的手段。我们证明了通过使用1.2- $ $ M宽的二氧化硅底物作为负折射镜来实现极端次波长度的焦点。我们的发现为纳米影像,光学传感和操纵纳米级能量转移的片上采用了一种破坏性的方法。

Controlling the charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties in natural materials. This approach could be used to induce topological transitions in the optical response of photonic systems. Here, we predict a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and $α$-phase molybdenum trioxide ($α$-MoO3). By chemically changing the doping level of graphene, we experimentally demonstrate that the contour topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, by changing the substrate medium for the heterostructure, the dispersion contour can be further engineered into a rather flattened shape at the topological transition, thus supporting tunable polariton canalization and providing the means to locally control the topology. We demonstrate this idea to achieve extremely subwavelength focusing by using a 1.2-$μ$m-wide silica substrate as a negative refraction lens. Our findings open a disruptive approach toward promising on-chip applications in nanoimaging, optical sensing, and manipulation of nanoscale energy transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源