论文标题

估计梯度水平制剂液相色谱中的吸附 - 等热参数的统计方法

A Statistical Approach to Estimating Adsorption-Isotherm Parameters in Gradient-Elution Preparative Liquid Chromatography

论文作者

Su, Jiaji, Yao, Zhigang, Li, Cheng, Zhang, Ye

论文摘要

确定吸附等温度是制备色谱中重要性重要性的问题。一种用于估计吸附等温线的现代技术是解决一个反问题,以便模拟的批次分离与实际的实验结果一致。但是,由于适应性不良,非线性高和相应物理模型的不确定性量化,现有的确定性反演方法通常在现实世界应用中效率低下。为了克服这些困难并研究吸附 - 等热参数的不确定性,在这项工作中,基于贝叶斯采样框架,我们提出了一种统计方法,用于估计各种色谱系统中的吸附等温线。开发了两种修改的马尔可夫链蒙特卡洛算法,以实现我们的统计方法。进行了合成和实际数据的数值实验,并描述了提出的新方法的效率。

Determining the adsorption isotherms is an issue of significant importance in preparative chromatography. A modern technique for estimating adsorption isotherms is to solve an inverse problem so that the simulated batch separation coincides with actual experimental results. However, due to the ill-posedness, the high non-linearity, and the uncertainty quantification of the corresponding physical model, the existing deterministic inversion methods are usually inefficient in real-world applications. To overcome these difficulties and study the uncertainties of the adsorption-isotherm parameters, in this work, based on the Bayesian sampling framework, we propose a statistical approach for estimating the adsorption isotherms in various chromatography systems. Two modified Markov chain Monte Carlo algorithms are developed for a numerical realization of our statistical approach. Numerical experiments with both synthetic and real data are conducted and described to show the efficiency of the proposed new method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源