论文标题
大阪反馈II:基于高分辨率模拟的超新星反馈建模
Osaka Feedback Model II: Modeling Supernova Feedback Based on High-Resolution Simulations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Feedback from supernovae (SNe) is an essential mechanism that self-regulates the growth of galaxies, and a better model of SN feedback is still needed in galaxy formation simulations. In the first part of this paper, using an Eulerian hydrodynamic code Athena++, we find universal scaling relations for the time evolution of momentum and radius for a superbubble, when the momentum and time are scaled by those at the shell-formation time. In the second part of this paper, we develop an SN feedback model based on the Athena++ simulation results utilizing Voronoi tessellation around each star particle, and implement it into the GADGET3-Osaka smoothed particle hydrodynamic code. Our feedback model was demonstrated to be isotropic and conservative in terms of energy and momentum. We examined the mass/energy/metal loading factors and find that our stochastic thermal feedback model produced galactic outflow that carries metals high above the galactic plane but with weak suppression of star formation. Additional mechanical feedback further suppressed star formation and brought the simulation results in better agreement with the observations of the Kennicutt--Schmidt relation, with all the results being within the uncertainties of observed data. We argue that both thermal and mechanical feedback are necessary for the SN feedback model of galaxy evolution when an individual SN bubble is unresolved.