论文标题
爱因斯坦 - 卡丹时期和相关热力学解释中无效的曲面的运动学和动力学
Kinematics and dynamics of null hypersurfaces in the Einstein-Cartan spacetime and related thermodynamic interpretation
论文作者
论文摘要
在时空存在的扭转(Riemann-cartan背景)的存在下,由Null Vector $ l^a $生成的一般几何结构(Riemann-Cartan背景)正在这里开发。然后,我们明确定义和构建各种相应的运动量。还讨论了无效表面的动力学,特别是由$ \ hat {g} _ {ab} k^al^b $给出。后来的一个是在{\ it Geodesic约束}条件下构造的。这产生了与辅助无效载体$ k^a $相对应的扩展标量变化速率和空表面上的各种运动学实体的关系。使用这种关系,我们表明,在该空的超脸上,爱因斯坦 - 卡丹 - 凯伯 - 塞米亚方程(提供度量和扭力张量的动力学)可获得热力学解释。适当鉴定热力学实体,例如温度,熵密度,能量和压力。在整个分析中,我们采用了扭转的几何田间解释,所有讨论都是以协变量进行的。
A general geometric construction of a generic null hypersurface in presence of torsion in the spacetime (Riemann-Cartan background), generated by a null vector $l^a$, is being developed here. We then explicitly define and structure various corresponding kinematical quantities. The dynamics of the null surface, particularly given by $\hat{G}_{ab}k^al^b$, is also discussed. The later one is constructed under the {\it geodesic constraint} condition. This yields a relation among the rate of change of expansion scalar corresponding to auxiliary null vector $k^a$ and various kinematical entities on the null surface. Using this relation we show that the Einstein-Cartan-Kibble-Sciama equation (which provides the dynamics of the metric and the torsion tensor) on this null hypersurface acquires a thermodynamic interpretation. The thermodynamic entities like temperature, entropy density, energy and pressure are properly identified. In the whole analysis we adopt the geometrical field interpretation of torsion and all discussions are done in a covariant manner.