论文标题

基于网格的块传输两设计

Block-transitive two-designs based on grids

论文作者

Alavi, Seyed Hassan, Daneshkhah, Ashraf, Devillers, Alice, Praeger, Cheryl E.

论文摘要

我们研究指向块的入门结构$(\ MATHCAL {p},\ MATHCAL {B})$,该点集$ \ Mathcal {p} $是$ M \ times n $ grid。卡梅隆和第四作者表明,每个块$ b $可以被视为完整的双分图$ \ mathbf {k} _ {m,n} $的子图,并带有两部分零件(两倍)尺寸$ m,n $。在$ \ nathcal {b} $由所有子图组成的情况下,在$ \ mathbf {k} _ {m,n} $固定两个双方的自动形态下,他们获得了$($ natercal {p p} $ a $ be a a $ be a a $ nign of the the tiparts,bee {m,n} $并成为$ 3 $ -DESIGN。我们首先在理论上更加绘制这些条件,然后专注于方格,并设计$ \ mathbf {k} _ {m {m,m,m} $的完整自动形态组。我们发现,在图理论参数方面,这些发病率结构是$ t $ - 设计的必要条件,对于$ t = 2,3 $,并给出了无限的示例家族,说明了基于$ 2 $ -DESIGNS的块,基于$ m $ $ m $ $ $ $ $ $ $ $ $ $ $ $ $ $ MM的block toct toct-point-promive $ 2 $ -DESIGNS。这种方法还使我们能够基于网格构建少量的块传输$ 3 $ designs。

We study point-block incidence structures $(\mathcal{P},\mathcal{B})$ for which the point set $\mathcal{P}$ is an $m\times n$ grid. Cameron and the fourth author showed that each block $B$ may be viewed as a subgraph of a complete bipartite graph $\mathbf{K}_{m,n}$ with bipartite parts (biparts) of sizes $m, n$. In the case where $\mathcal{B}$ consists of all the subgraphs isomorphic to $B$, under automorphisms of $\mathbf{K}_{m,n}$ fixing the two biparts, they obtained necessary and sufficient conditions for $(\mathcal{P},\mathcal{B})$ to be a $2$-design, and to be a $3$-design. We first re-interpret these conditions more graph theoretically, and then focus on square grids, and designs admitting the full automorphism group of $\mathbf{K}_{m,m}$. We find necessary and sufficient conditions, again in terms of graph theoretic parameters, for these incidence structures to be $t$-designs, for $t=2, 3$, and give infinite families of examples illustrating that block-transitive, point-primitive $2$-designs based on grids exist for all values of $m$, and flag-transitive, point-primitive examples occur for all even $m$. This approach also allows us to construct a small number of block-transitive $3$-designs based on grids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源