论文标题
梯度下降动力学和无限维度的干扰过渡
Gradient descent dynamics and the jamming transition in infinite dimensions
论文作者
论文摘要
复杂能量景观中的梯度下降动力学,即具有多个最小值的梯度动力学,从软物质到机器学习中发现了许多不同问题的应用。在这里,我们分析了最简单的示例之一,即无限空间尺寸$ d $的软排斥颗粒的示例之一。然后,梯度下降动力学将显示一个干扰的转变:在低密度下,它达到零能量状态,其中颗粒的重叠被完全消除,而在高密度下,能量仍然有限,并且重叠持续存在。在过渡时,动态变得至关重要。在$ d \ to \ infty $限制中,可以通过平均场理论得出一组自洽动力方程。我们分析这些方程式,并为他们的解决方案提供了一些部分进步。我们还研究了$ d = 2 \ ldots 22 $的随机Lorentz气体,并获得了$ d \ to \ infty $中的干扰过渡的强大估计。干扰过渡类似于监督学习中的能力转变,在附录中,我们讨论了一个简单的单层完全连接的感知者的类比。
Gradient descent dynamics in complex energy landscapes, i.e. featuring multiple minima, finds application in many different problems, from soft matter to machine learning. Here, we analyze one of the simplest examples, namely that of soft repulsive particles in the limit of infinite spatial dimension $d$. The gradient descent dynamics then displays a jamming transition: at low density, it reaches zero-energy states in which particles' overlaps are fully eliminated, while at high density the energy remains finite and overlaps persist. At the transition, the dynamics becomes critical. In the $d\to \infty$ limit, a set of self-consistent dynamical equations can be derived via mean field theory. We analyze these equations and we present some partial progress towards their solution. We also study the Random Lorentz Gas in a range of $d=2\ldots 22$, and obtain a robust estimate for the jamming transition in $d\to\infty$. The jamming transition is analogous to the capacity transition in supervised learning, and in the appendix we discuss this analogy in the case of a simple one-layer fully-connected perceptron.