论文标题
设定值汉密尔顿 - 雅各比方程的特征曲线
Characteristic curves for set-valued Hamilton-Jacobi equations
论文作者
论文摘要
特征的方法扩展到了值值汉密尔顿 - 雅各比方程。这个问题是由多标准函数的变化问题的计算引起的:通过将嵌入到设定值的框架中,得出了一个值得值得的汉密尔顿 - 雅各布方程,其中汉密尔顿功能是lagrangian函数的Fenchel conjugate。在本文中,描述了一种特征方法,并给出了Fenchel共轭的一些结果。
The method of characteristics is extended to set-valued Hamilton-Jacobi equations. This problems arises from a calculus of variations' problem with a multicriteria Lagrangian function: through an embedding into a set-valued framework, a set-valued Hamilton-Jacobi equation is derived, where the Hamiltonian function is the Fenchel conjugate of the Lagrangian function. In this paper a method of characteristics is described and some results are given for the Fenchel conjugate.