论文标题

三角形网格的制造商 - 破坏者划分游戏

Maker-Breaker-Crossing-Game on the Triangular Grid-graph

论文作者

Wallwork, Freddie

论文摘要

我们研究$(P,Q)$ - 由Day推出的制造商Breaker Crossing Game和“ Maker-Breaker-Breaker Percolation Games I:Crossing Grids”中的Falgas Ravry。他们的论文中描述的游戏涉及两个玩家制造商和Breaker,他们轮流声称P和Q分别是该图的尚未获得的边缘。制造商的目标是从最左端的顶点到最右边的顶点,而断路器则旨在防止这种情况。该游戏是更通用的香农切换游戏的一个版本,并在方形网格图上播放。 我们考虑在三角形网格图上玩过的同一游戏$δ_ {(m,n)} $(横跨n个顶点高),旨在找到给定的$(P,Q,M,N)$,这是制造商或Breaker的获奖策略。我们建立了与Day和Falgas Ravry相似的策略,以表明: $ \ bullet $用于足够高的网格和$ p \ geq Q $制造商具有$(p,q)$ - $δ_ {(m,n)} $的$(p,q)$ - 交叉游戏的获胜策略。 $ \ bullet $用于足够宽的网格和$ 4P \ leq Q $,Breaker在$δ_{(M,N)} $上具有$(P,Q)$ - 交叉游戏的胜利策略。

We study the $(p,q)$-Maker Breaker Crossing game introduced by Day and Falgas Ravry in 'Maker-Breaker percolation games I: crossing grids'. The game described in their paper involves two players Maker and Breaker who take turns claiming p and q as yet unclaimed edges of the graph respectively. Maker aims to make a horizontal path from a leftmost vertex to a rightmost vertex and Breaker aims to prevent this. The game is a version of the more general Shannon switching game and is played on a square grid graph. We consider the same game played on the triangular grid graph $Δ_{(m,n)}$ (m vertices across, n vertices high) and aim to find, for given $(p,q,m,n)$, a winning strategy for Maker or Breaker. We establish using a similar strategy to that used by Day and Falgas Ravry to show that: $\bullet$ For sufficiently tall grids and $p\geq q$ Maker has a winning strategy for the $(p,q)$-crossing game on $Δ_{(m,n)}$ . $\bullet$ For sufficiently wide grids and $4p\leq q$, Breaker has a winning strategy for the $(p,q)$-crossing game on $Δ_{(m,n)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源