论文标题

估计高维处理的异质因果作用:应用于联合分析

Estimating Heterogeneous Causal Effects of High-Dimensional Treatments: Application to Conjoint Analysis

论文作者

Goplerud, Max, Imai, Kosuke, Pashley, Nicole E.

论文摘要

异质治疗效果的估计是一个积极的研究领域。但是,大多数现有方法都集中在估计一组预处理协变量的情况下,估算单个二元治疗的条件平均治疗效果。在本文中,我们提出了一种估计高维处理的异质因果作用的方法,该方法在估计和解释方面提出了独特的挑战。提出的方法找到了最大的异质组,并使用正规逻辑回归的贝叶斯混合物来识别表现出相似的治疗效果模式的单元组。通过将小组成员与协变量进行建模,提出的方法允许人们探索与不同治疗效果模式相关的单位特征。我们激励的应用是联合分析,这是社会科学和市场研究中的一种流行调查实验类型,它基于高维阶乘设计。我们将提出的方法应用于联合数据,要求调查受访者选择具有随机选择属性的两个移民概况之一。我们发现,一群具有相对较高偏见的受访者似乎歧视了来自伊拉克等非欧洲国家的移民。可以使用开源软件包实施提出的方法。

Estimation of heterogeneous treatment effects is an active area of research. Most of the existing methods, however, focus on estimating the conditional average treatment effects of a single, binary treatment given a set of pre-treatment covariates. In this paper, we propose a method to estimate the heterogeneous causal effects of high-dimensional treatments, which poses unique challenges in terms of estimation and interpretation. The proposed approach finds maximally heterogeneous groups and uses a Bayesian mixture of regularized logistic regressions to identify groups of units who exhibit similar patterns of treatment effects. By directly modeling group membership with covariates, the proposed methodology allows one to explore the unit characteristics that are associated with different patterns of treatment effects. Our motivating application is conjoint analysis, which is a popular type of survey experiment in social science and marketing research and is based on a high-dimensional factorial design. We apply the proposed methodology to the conjoint data, where survey respondents are asked to select one of two immigrant profiles with randomly selected attributes. We find that a group of respondents with a relatively high degree of prejudice appears to discriminate against immigrants from non-European countries like Iraq. An open-source software package is available for implementing the proposed methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源