论文标题
人类流动性中的动态可预测性和时空环境
Dynamic predictability and spatio-temporal contexts in human mobility
论文作者
论文摘要
人类的旅行行为在很大程度上是可以预见的,并且主要是由生物必需品(例如睡眠,饮食)和社会结构(\ eg学校时间表,劳动同步)驱动的。毫不奇怪,这种可预测性受到一系列因素的影响,从个人(\ eg偏好,选择)和社会(\ eg家庭,群体)一直到全球规模(\ eg eg the Pandemic中的流动限制)。在这项工作中,我们探讨了单个级别的流动性中的时空模式如何,我们称为\ emph {可预测性状态},对流动性规律性的性质具有很大程度的信息。我们的发现表明,可预测性状态中存在上下文和活动特征的存在,指出了更复杂的,数据驱动的方法,用于短期,高阶的迁移率预测,超出了频繁/概率/概率方法。
Human travelling behaviours are markedly regular, to a large extent, predictable, and mostly driven by biological necessities (\eg sleeping, eating) and social constructs (\eg school schedules, synchronisation of labour). Not surprisingly, such predictability is influenced by an array of factors ranging in scale from individual (\eg preference, choices) and social (\eg household, groups) all the way to global scale (\eg mobility restrictions in a pandemic). In this work, we explore how spatio-temporal patterns in individual-level mobility, which we refer to as \emph{predictability states}, carry a large degree of information regarding the nature of the regularities in mobility. Our findings indicate the existence of contextual and activity signatures in predictability states, pointing towards the potential for more sophisticated, data-driven approaches to short-term, higher-order mobility predictions beyond frequentist/probabilistic methods.