论文标题

使用自动编码器进行异常检测的潜在矢量扩展

Latent Vector Expansion using Autoencoder for Anomaly Detection

论文作者

Gim, UJu, Park, YeongHyeon

论文摘要

深度学习方法可以将各种非结构化数据(例如图像,语言和语音)分类为输入数据。随着在现实世界中对异常进行分类的任务变得越来越重要,因此存在各种方法,用于使用深度学习与现实世界中收集的数据进行分类。随着在现实世界中对异常进行分类的任务变得越来越重要,有多种方法可以使用深度学习与现实世界中收集的数据进行分类。在各种方法中,代表性方法是一种基于预训练模型的过渡模型来提取和学习主要特征的方法,以及一种仅使用正常数据学习自动编码结构并通过阈值将其分类为异常的方法。但是,如果数据集不平衡,即使是最先进的模型也无法实现良好的性能。这可以通过扩大不平衡数据中的正常和异常特征作为具有很强区别的特征来解决。我们使用自动编码器的功能来训练从低维度到高维度的潜在向量。我们将正常和异常数据训练作为一种功能,在不平衡数据的特征之间具有很强的区别。我们提出了一个潜在矢量扩展自动编码器模型,该模型可以改善数据不平衡的数据。与基本自动编码器使用不平衡的异常数据集相比,提出的方法显示了性能改善。

Deep learning methods can classify various unstructured data such as images, language, and voice as input data. As the task of classifying anomalies becomes more important in the real world, various methods exist for classifying using deep learning with data collected in the real world. As the task of classifying anomalies becomes more important in the real world, there are various methods for classifying using deep learning with data collected in the real world. Among the various methods, the representative approach is a method of extracting and learning the main features based on a transition model from pre-trained models, and a method of learning an autoencoderbased structure only with normal data and classifying it as abnormal through a threshold value. However, if the dataset is imbalanced, even the state-of-the-arts models do not achieve good performance. This can be addressed by augmenting normal and abnormal features in imbalanced data as features with strong distinction. We use the features of the autoencoder to train latent vectors from low to high dimensionality. We train normal and abnormal data as a feature that has a strong distinction among the features of imbalanced data. We propose a latent vector expansion autoencoder model that improves classification performance at imbalanced data. The proposed method shows performance improvement compared to the basic autoencoder using imbalanced anomaly dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源