论文标题

Malcolmson Semigroups

Malcolmson semigroups

论文作者

Hung, Tsz Fun, Li, Hanfeng

论文摘要

受到C*-Algebra的Cuntz Semigroup的构建的启发,我们介绍了Malcolmson Semigroup的基质和有限呈现的模块Malcolmson Semigroup,用于Unital环。这两个半群显示通常具有同构Grothendieck组,并且对von Neumann常规环是同构。对于Unital c*-Algebras,表明矩阵Malcolmson Semigroup对Cuntz Semigroup具有自然的量规订单保存同构,每个尺寸函数都是Sylvester矩阵级别函数,并且存在Sylvester Matrix级别级别函数,不是尺寸函数。

Inspired by the construction of the Cuntz semigroup for a C*-algebra, we introduce the matrix Malcolmson semigroup and the finitely presented module Malcolmson semigroup for a unital ring. These two semigroups are shown to have isomorphic Grothendieck group in general and be isomorphic for von Neumann regular rings. For unital C*-algebras, it is shown that the matrix Malcolmson semigroup has a natural surjective order-preserving homomorphism to the Cuntz semigroup, every dimension function is a Sylvester matrix rank function, and there exist Sylvester matrix rank functions which are not dimension functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源