论文标题
旋转玻色子恒星中旋转测试粒子的赤道轨道
Equatorial orbits of spinning test particle in rotating boson star
论文作者
论文摘要
在本文中,我们研究了旋转玻色子恒星背景中旋转测试粒子的圆轨道。使用杆旋近近似并忽略了旋转测试粒子在时空上的后反应,Mathisson-Papapetrou-dixon方程描述了旋转测试粒子的运动方程。我们在Tulczyjew自旋供应条件下求解该方程,并获得旋转测试粒子的四弹和四速度。与无旋转粒子完全不同,旋转角动量为零的旋转粒子的有效电位在旋转玻色子恒星的中心无限。这将导致这样一个事实,即旋转粒子无法穿过玻色子恒星的中心。但是,当自旋角动量和轨道角动量满足$ 2 \ bar {s}+\ bar {l} = 0 $时,有效电位不再发散,并且旋转粒子可以穿过旋转玻色子星的中心。 {我们仍研究旋转如何影响圆形轨道的结构,我们发现旋转将诱导无圆形轨道的较大或较小的区域,不稳定的圆形轨道以及稳定的圆形轨道。}此外,圆形轨道的半径和能量将被粒子旋转降低或增加。这些结果将在测试玻色子恒星背景中的重力波中具有重要的应用。
In this paper, we study the circular orbit of the spinning test particle in the background of a rotating boson star. Using the pole-dipole approximation and neglecting the back-reaction of the spinning test particle on the spacetime, the equation of motion of the spinning test particle is described by the Mathisson-Papapetrou-Dixon equation. We solve this equation under the Tulczyjew spin-supplementary condition and obtain the four-momentum and four-velocity of the spinning test particle. Quite different from the spinless particle, the effective potential of the spinning particle with zero orbital angular momentum goes to infinite at the center of the rotating boson star. This will lead to the fact that the spinning particle can not pass through the center of the boson star. However, when the spin angular momentum and orbital angular momentum satisfy $2\bar{s}+\bar{l}=0$, the effective potential is not divergent anymore and the spinning particle can pass through the center of the rotating boson star. {We still investigate how the spin affects the structure of the circular orbits and we find that the spin will induce the larger or smaller regions of no circular orbits, unstable circular orbits, and stable circular orbits.} Moreover, the radius and energy of the circular orbit will be decreased or increased by the particle spin. These results will have an important application in testing the gravitational waves in the boson star background.