论文标题

反向扩展卡尔曼过滤器 - 第一部分:基本面

Inverse Extended Kalman Filter -- Part I: Fundamentals

论文作者

Singh, Himali, Chattopadhyay, Arpan, Mishra, Kumar Vijay

论文摘要

从贝叶斯的角度来看,反对抗系统的最新进展引起了人们对反过滤的大量研究。例如,有兴趣估算对手的卡尔曼过滤器跟踪的估算值,目的是预测对手的未来步骤,这导致了近来的卡尔曼过滤器(I-KF)的最新表述。在这种反向过滤的情况下,我们通过提出反向扩展Kalman滤波器(I-EKF)来解决非线性过程动力学的关键挑战和向前滤波器的未知输入。本文和同伴论文(第二部分)的目的是详细介绍I-EKF的理论。在本文中,我们假设完美的系统模型信息,并在前进和反向状态空间模型都是非线性时得出有和没有未知输入的I-EKF。在此过程中,还获得了I-KF-With-With-With-With-nown输入。然后,我们使用有限的非线性和未知矩阵方法提供理论稳定性保证,并证明I-EKF的一致性。数值实验使用递归cramér-rao下限作为基准来验证我们针对各种提议的反过滤器的方法。在同伴论文(第二部分)中,我们将这些公式进一步概括为高度非线性模型,并提出重现基于Hilbert空间的EKF的内核,以处理不完整的系统模型信息。

Recent advances in counter-adversarial systems have garnered significant research attention to inverse filtering from a Bayesian perspective. For example, interest in estimating the adversary's Kalman filter tracked estimate with the purpose of predicting the adversary's future steps has led to recent formulations of inverse Kalman filter (I-KF). In this context of inverse filtering, we address the key challenges of non-linear process dynamics and unknown input to the forward filter by proposing an inverse extended Kalman filter (I-EKF). The purpose of this paper and the companion paper (Part II) is to develop the theory of I-EKF in detail. In this paper, we assume perfect system model information and derive I-EKF with and without an unknown input when both forward and inverse state-space models are non-linear. In the process, I-KF-with-unknown-input is also obtained. We then provide theoretical stability guarantees using both bounded non-linearity and unknown matrix approaches and prove the I-EKF's consistency. Numerical experiments validate our methods for various proposed inverse filters using the recursive Cramér-Rao lower bound as a benchmark. In the companion paper (Part II), we further generalize these formulations to highly non-linear models and propose reproducing kernel Hilbert space-based EKF to handle incomplete system model information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源