论文标题

具有对称性的差分代数方程的本地和全球规范形式

Local and global canonical forms for differential-algebraic equations with symmetries

论文作者

Kunkel, Peter, Mehrmann, Volker

论文摘要

研究了具有对称性的线性时变差分 - 代数方程。我们解决的结构是自我伴侣和偏斜系统。介绍了局部和全局规范形式,并用于将与微分方程相关的流量的几何特性分类为符号或广义正交流。作为应用,结果将应用于电路模拟和不可压缩流引起的耗散性汉密尔顿系统的分析。

Linear time-varying differential-algebraic equations with symmetries are studied. The structures that we address are self-adjoint and skew-adjoint systems. Local and global canonical forms under congruence are presented and used to classify the geometric properties of the flow associated with the differential equation as symplectic or generalized orthogonal flow. As applications, the results are applied to the analysis of dissipative Hamiltonian systems arising from circuit simulation and incompressible flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源