论文标题
在伽马辐射下使用机器学习在芯片上进行异常检测
Using Machine Learning for Anomaly Detection on a System-on-Chip under Gamma Radiation
论文作者
论文摘要
新的纳米级技术的出现为在辐射环境中设计可靠的电子系统带来了重大挑战。几种类型的辐射(例如总电离剂量(TID)效应)通常会对此类纳米级电子设备造成永久损害,而当前的最新技术来解决TID,则利用了昂贵的辐射装置。本文重点介绍了一种新颖的方法:使用机器学习算法对消费者电子级别的可编程门阵列(FPGA)来解决TID效果并监视它们在停止工作之前进行替换。当董事会因潮汐效应而导致总失败时,这种情况需要预测研究挑战。我们在伽马射线下观察了FPGA板的内部测量值,并使用了三种不同的异常检测机学习(ML)算法来检测伽马辐射环境中传感器测量中的异常。统计结果表明,伽马射线暴露水平与板测量之间存在高度显着的关系。此外,我们的异常检测结果表明,具有径向基函数内核的一级支持向量机的平均召回率为0.95。同样,在董事会停止工作之前,可以检测到所有异常。
The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) effects often cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of the FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class Support Vector Machine with Radial Basis Function Kernel has an average Recall score of 0.95. Also, all anomalies can be detected before the boards stop working.