论文标题

一些反示例到中央限制定理以进行随机旋转

Some counterexamples to the central limit theorem for random rotations

论文作者

Czudek, Klaudiusz

论文摘要

修复一个非理性数字$α$,并考虑在圆圈上随机步行,在该圆圈中,每个步骤都会移至$ x+α$或$ x-α$,概率为$ 1/2,1/2 $,提供当前位置为$ x $。如果给出了可观察的,我们可以研究一个随机步行的称为加性功能的过程。一个人可以在可观察到的$α$的可观察到的二聚体特性之间的某些关系中表示中心限制定理。在这里证明,对于每个liouville角度来说,都存在一个平稳的观察力,使中心限制定理失败。我们还构建了一个liouville角度,因此中心极限定理在某些可观察到的分析性上失败。对于Diophantine角度,也给出了一些反例。一个有趣的问题仍然开放。

Fix an irrational number $α$, and consider a random walk on the circle in which at each step one moves to $x+α$ or $x-α$ with probabilities $1/2, 1/2$ provided the current position is $x$. If an observable is given we can study a process called an additive functional of this random walk. One can formulate certain relations between the regularity of the observable and the Diophantine properties of $α$ implying the central limit theorem. It is proven here that for every Liouville angle there exists a smooth observable such that the central limit theorem fails. We construct also a Liouville angle such that the central limit theorem fails with some analytic observable. For Diophantine angles some counterexample is given as well. An interesting question remained open.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源