论文标题
关于相关电子在温度方案中相关电子的非线性响应的密度功能理论的观点
Density-Functional-Theory Perspective on the Non-Linear Response of Correlated Electrons Across Temperature Regimes
论文作者
论文摘要
我们探索了一种新的形式主义,以基于Kohn-Sham密度功能理论(KS-DFT)在部分和强烈的量子退化状态下研究非线性电子密度响应。证明KS-DFT计算能够准确地在与温暖的物质研究相关的温度下准确地重现可用的路径积分蒙特卡洛仿真结果。严格测试了二次反应功能的现有分析结果。证明二次响应函数的分析结果与KS-DFT数据非常吻合。此外,执行的分析表明,目前用于立方响应函数的分析公式无法描述仿真结果,无论是定性还是定量,在小波数$ q <2q_f $上,$ q_f $是费米波浪 - number。结果表明,KS-DFT可用于描述具有显着精确性的外部田地强烈扰动的温暖密集物质。此外,证明KS-DFT构成了一种有价值的工具,可以指导从环境到极端条件的相关量子电子的非线性响应理论的发展。这为在不同环境中无法使用先前使用的路径积分蒙特卡洛方法访问的不同情况下研究非线性效应的新途径[T. Dornheim等人,物理。莱特牧师。 125,085001(2020)]。
We explore a new formalism to study the nonlinear electronic density response based on Kohn-Sham density functional theory (KS-DFT) at partially and strongly quantum degenerate regimes. It is demonstrated that the KS-DFT calculations are able to accurately reproduce the available path integral Monte Carlo simulation results at temperatures relevant for warm dense matter research. The existing analytical results for the quadratic and cubic response functions are rigorously tested. It is demonstrated that the analytical results for the quadratic response function closely agree with the KS-DFT data. Furthermore, the performed analysis reveals that currently available analytical formulas for the cubic response function are not able to describe simulation results, neither qualitatively nor quantitatively, at small wave-numbers $q<2q_F$, with $q_F$ being the Fermi wave-number. The results show that KS-DFT can be used to describe warm dense matter that is strongly perturbed by an external field with remarkable accuracy. Furthermore, it is demonstrated that KS-DFT constitutes a valuable tool to guide the development of the non-linear response theory of correlated quantum electrons from ambient to extreme conditions. This opens up new avenues to study nonlinear effects in a gamut of different contexts at conditions that cannot be accessed with previously used path integral Monte Carlo methods [T. Dornheim et al., Phys. Rev. Lett. 125, 085001 (2020)].