论文标题

关于布朗聚合物的限制性定律,带有几何区域倾斜

On the limiting law of line ensembles of Brownian polymers with geometric area tilts

论文作者

Dembo, Amir, Lubetzky, Eyal, Zeitouni, Ofer

论文摘要

我们研究了坚硬的壁上的非交叉布朗桥的线团,每个桥都被其下方区域的区域倾斜,并具有几何生长的前成分。该模型模仿了硬墙上方的$(2+1)$ D SOS模型的水平线,并由Caputo,Ioffe和Wachtel在2019年的两幅作品中进行了研究。在这些作品中,对于任何固定的$ k $,在零或自由边界条件下建立了最高$ k $路径的法律的紧密度,在前一种环境中,这意味着通过单调性参数存在限制。在这里,我们解决了在自由边界条件下限制的开放问题:我们证明,作为间隔长度,随后是路径数,转到$ \ infty $,Top $ k $路径汇聚到与自由边界情况相同的限制,如Caputo,Ioffe,Ioffe和Wachtel的猜想。

We study the line ensembles of non-crossing Brownian bridges above a hard wall, each tilted by the area of the region below it with geometrically growing pre-factors. This model, which mimics the level lines of the $(2+1)$D SOS model above a hard wall, was studied in two works from 2019 by Caputo, Ioffe and Wachtel. In those works, the tightness of the law of the top $k$ paths, for any fixed $k$, was established under either zero or free boundary conditions, which in the former setting implied the existence of a limit via a monotonicity argument. Here we address the open problem of a limit under free boundary conditions: we prove that as the interval length, followed by the number of paths, go to $\infty$, the top $k$ paths converge to the same limit as in the free boundary case, as conjectured by Caputo, Ioffe and Wachtel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源