论文标题
湍流激光 - 血浆发电机对初始条件的不敏感性
Insensitivity of a turbulent laser-plasma dynamo to initial conditions
论文作者
论文摘要
最近在实验上证明,两种不均匀,不对称,弱磁性激光生产的等离子体射流可以通过小型SCALE湍流动力机制产生强的随机磁场而产生的湍流等离子体,前提是Plasma的磁性雷诺数足够大。在本文中,我们将这种等离子体与由两个预磁性等离子体喷头产生的等离子体进行了比较,它们的创建是相同的,除了添加了由脉冲磁场发生器(“ mifeds”)施加的强外部磁场。我们使用Thomson散落的诊断,X射线自我发射成像和质子射线照相研究了两个湍流系统之间的差异。 Thomson散射光谱和X射线图像表明,外部磁场的存在对实验中的血浆动力学有限。虽然外部磁场的存在诱导了碰撞等离子体喷头中的流量的准确性,并且由于外部场,随机磁场的外部磁场的相互作用而引起的磁场的初始强度明显更大,但放大后随机磁场的能量和形态是不可分割的。我们得出的结论是,对于具有超临界磁性雷诺数的湍流激光 - 平板,动力放大的磁场由湍流动力学而不是种子场决定,而血浆初始流动动力学的适度变化是一致的,这与湍流动力学的理论期望和模拟一致。
It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetised laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetised plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator (`MIFEDS'). We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, X-ray self-emission imaging and proton radiography. The Thomson-scattering spectra and X-ray images suggest that the presence of the external magnetic field has a limited effect on the plasma dynamics in the experiment. While the presence of the external magnetic field induces collimation of the flows in the colliding plasma jets and the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energy and morphology of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with super-critical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields and modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.