论文标题
Hecke-Maass新形式和Landau-Siegel Zeros的有效量子独特
Effective quantum unique ergodicity for Hecke-Maass newforms and Landau-Siegel zeros
论文作者
论文摘要
我们表明,dirichlet $ l $ fors的Landau-siegel零不存在,或者$ \ mathrm {gl} _2 $ hecke-maass newforms Newforms的量子唯一的巨型零件具有有效的收敛速度。这是从更普遍的结果中得出的:dirichlet $ l $ functions的landau-siegel zeros击退所有其他自动形态$ l $ functions的零,从行$ \ mathrm {re}(s)= 1 $。
We show that Landau-Siegel zeros for Dirichlet $L$-functions do not exist or quantum unique ergodicity for $\mathrm{GL}_2$ Hecke-Maass newforms holds with an effective rate of convergence. This follows from a more general result: Landau-Siegel zeros of Dirichlet $L$-functions repel the zeros of all other automorphic $L$-functions from the line $\mathrm{Re}(s)=1$.