论文标题
用于协作过滤的生成对抗网络的评估研究
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering
论文作者
论文摘要
这项工作探讨了CFGAN的可重复性。 CFGAN及其模型家族(Tagrec,MTPR和Crgan)学会通过使用以前的互动来生成一个个性化和假买的偏好的偏好等级。这项工作成功地复制了原始论文中发布的结果,并讨论了CFGAN框架与原始评估中使用的模型之间某些差异的影响。没有随机噪声和作为条件矢量的真实用户概要文件的使用使发电机容易学习,以学习一个退化的解决方案,其中输出向量与输入向量相同,因此,实际上表现为简单的自动编码器。这项工作进一步扩展了实验分析,将CFGAN与选择的简单且众所周知的正确优化的基线进行了比较,观察到CFGAN尽管其计算成本很高,但CFGAN并不始终如一地与它们竞争。为了确保这些分析的可重复性,这项工作描述了实验方法,并发布了所有数据集和源代码。
This work explores the reproducibility of CFGAN. CFGAN and its family of models (TagRec, MTPR, and CRGAN) learn to generate personalized and fake-but-realistic rankings of preferences for top-N recommendations by using previous interactions. This work successfully replicates the results published in the original paper and discusses the impact of certain differences between the CFGAN framework and the model used in the original evaluation. The absence of random noise and the use of real user profiles as condition vectors leaves the generator prone to learn a degenerate solution in which the output vector is identical to the input vector, therefore, behaving essentially as a simple autoencoder. The work further expands the experimental analysis comparing CFGAN against a selection of simple and well-known properly optimized baselines, observing that CFGAN is not consistently competitive against them despite its high computational cost. To ensure the reproducibility of these analyses, this work describes the experimental methodology and publishes all datasets and source code.