论文标题
分解以适应:跨域对象检测通过特征分离
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement
论文作者
论文摘要
无监督的域适应性(UDA)技术的最新进展在跨域计算机视觉任务方面取得了巨大成功,从而通过弥合域分布差距来增强数据驱动的深度学习体系结构的概括能力。对于基于UDA的跨域对象检测方法,大多数通过通过对抗性学习策略诱导域不变特征生成来减轻域偏差。但是,由于不稳定的对抗训练过程,他们的域歧视者具有有限的分类能力。因此,它们诱导的提取特征不能完全是域的不变性,并且仍然包含域私有因素,从而带来了障碍,以进一步缓解跨域差异。为了解决此问题,我们更快地设计了一个域DISENTANGERMENT(DDF),以消除检测任务学习功能中的特定于源信息。我们的DDF方法分别促进了全球和本地阶段的特征分离,分别具有全球三重态分离(GTD)模块和实例相似性解开(ISD)模块。通过在四个基准UDA对象检测任务上胜过最先进的方法,我们的DDF方法被证明具有广泛的适用性。
Recent advances in unsupervised domain adaptation (UDA) techniques have witnessed great success in cross-domain computer vision tasks, enhancing the generalization ability of data-driven deep learning architectures by bridging the domain distribution gaps. For the UDA-based cross-domain object detection methods, the majority of them alleviate the domain bias by inducing the domain-invariant feature generation via adversarial learning strategy. However, their domain discriminators have limited classification ability due to the unstable adversarial training process. Therefore, the extracted features induced by them cannot be perfectly domain-invariant and still contain domain-private factors, bringing obstacles to further alleviate the cross-domain discrepancy. To tackle this issue, we design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning. Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module, respectively. By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.