论文标题
SPDL:区块链安全和保护隐私化的分散学习
SPDL: Blockchain-secured and Privacy-preserving Decentralized Learning
论文作者
论文摘要
分散学习涉及在远程移动设备,边缘服务器或云服务器上进行培训机器学习模型,同时保持数据本地化。即使许多研究表明保留隐私,提高培训绩效或引入拜占庭式弹性的可行性,但它们都没有同时考虑所有这些。因此,我们面临以下问题:\ textIt {我们如何有效地协调分散的学习过程,同时维持学习安全性和数据隐私?}以解决此问题,在本文中,我们建议SPDL,一个区块链扣除和隐私性的分散学习方案。 SPDL将区块链,拜占庭断层(BFT)共识,BFT梯度聚合规则(GAR)和差异隐私集成到一个系统中,确保有效的机器学习,同时维持数据隐私,拜占庭式容错,透明度,透明度和可怜性。为了验证我们的计划,我们在存在拜占庭节点的情况下对收敛和遗憾进行了严格的分析。我们还构建了SPDL原型,并进行了广泛的实验,以证明SPDL具有强大的安全性和隐私保证的有效效率。
Decentralized learning involves training machine learning models over remote mobile devices, edge servers, or cloud servers while keeping data localized. Even though many studies have shown the feasibility of preserving privacy, enhancing training performance or introducing Byzantine resilience, but none of them simultaneously considers all of them. Therefore we face the following problem: \textit{how can we efficiently coordinate the decentralized learning process while simultaneously maintaining learning security and data privacy?} To address this issue, in this paper we propose SPDL, a blockchain-secured and privacy-preserving decentralized learning scheme. SPDL integrates blockchain, Byzantine Fault-Tolerant (BFT) consensus, BFT Gradients Aggregation Rule (GAR), and differential privacy seamlessly into one system, ensuring efficient machine learning while maintaining data privacy, Byzantine fault tolerance, transparency, and traceability. To validate our scheme, we provide rigorous analysis on convergence and regret in the presence of Byzantine nodes. We also build a SPDL prototype and conduct extensive experiments to demonstrate that SPDL is effective and efficient with strong security and privacy guarantees.