论文标题
非线性对固定时间影响固定目标的最佳指导
Nonlinear Optimal Guidance for Fixed-Time Impact on a Stationary Target
论文作者
论文摘要
本文关注的是设计非线性最佳指导,以拦截具有固定影响时间的固定目标。根据Pontryagin的最大原理(PMP),建立了非线性最佳拦截问题解决方案的一些最佳条件,并提出了相应的最佳控制的结构。通过采用最佳条件,我们制定了一个参数化系统,以便其解决方案空间与非线性最佳拦截问题相同。结果,在不使用任何优化方法的情况下,对参数化系统的简单传播足以生成足够的采样数据,用于从当前状态和到达最佳指导命令的映射。借助通用近似定理,由生成数据训练的前馈神经网络能够代表从当前状态和到达最佳指导命令的映射。因此,受过训练的网络最终可以在恒定时间内生成固定损坏的非线性最佳指导。最后,通过模拟对开发的非线性最佳指导进行了例证和研究,表明非线性最佳指导法的执行效果比现有的拦截指导法更好。
This paper is concerned with devising the nonlinear optimal guidance for intercepting a stationary target with a fixed impact time. According to Pontryagin's Maximum Principle (PMP), some optimality conditions for the solutions of the nonlinear optimal interception problem are established, and the structure of the corresponding optimal control is presented. By employing the optimality conditions, we formulate a parameterized system so that its solution space is the same as that of the nonlinear optimal interception problem. As a consequence, a simple propagation of the parameterized system, without using any optimization method, is sufficient to generate enough sampled data for the mapping from current state and time-to-go to the optimal guidance command. By virtue of the universal approximation theorem, a feedforward neural network, trained by the generated data, is able to represent the mapping from current state and time-to-go to the optimal guidance command. Therefore, the trained network eventually can generate fixed-impact-time nonlinear optimal guidance within a constant time. Finally, the developed nonlinear optimal guidance is exemplified and studied through simulations, showing that the nonlinear optimal guidance law performs better than existing interception guidance laws.