论文标题

贝叶斯回归方法在时间序列分析中构建和堆叠预测模型

Bayesian Regression Approach for Building and Stacking Predictive Models in Time Series Analytics

论文作者

Pavlyshenko, Bohdan M.

论文摘要

本文描述了贝叶斯回归用于建立时间序列模型的使用,并为时间序列堆叠了不同的预测模型。分析了使用贝叶斯回归进行非线性趋势的时间序列建模。这种方法可以估算时间序列预测的不确定性并计算风险特征的价值。已经考虑了使用贝叶斯回归的时间序列的分层模型。在这种方法中,对于所有数据示例,一组参数都是相同的,对于不同的数据示例,其他参数可能不同。这种方法允许在指定时间序列的简短历史数据中使用此模型,例如对于销售预测问题中的新商店或新产品。在预测模型堆叠的研究中,使用了模型Arima,神经网络,随机森林,额外的树,用于在模型集合的第一层进行预测。在第二层上,这些模型在验证集上的时间序列预测用于贝叶斯回归堆叠。这种方法为这些模型的回归系数提供了分布。它可以估算每个模型堆叠结果的不确定性。有关这些分布的信息使我们能够考虑到域知识,从而选择一组最佳的堆叠模型。堆叠预测模型的概率方法使我们能够对决策过程中重要的预测进行风险评估。

The paper describes the use of Bayesian regression for building time series models and stacking different predictive models for time series. Using Bayesian regression for time series modeling with nonlinear trend was analyzed. This approach makes it possible to estimate an uncertainty of time series prediction and calculate value at risk characteristics. A hierarchical model for time series using Bayesian regression has been considered. In this approach, one set of parameters is the same for all data samples, other parameters can be different for different groups of data samples. Such an approach allows using this model in the case of short historical data for specified time series, e.g. in the case of new stores or new products in the sales prediction problem. In the study of predictive models stacking, the models ARIMA, Neural Network, Random Forest, Extra Tree were used for the prediction on the first level of model ensemble. On the second level, time series predictions of these models on the validation set were used for stacking by Bayesian regression. This approach gives distributions for regression coefficients of these models. It makes it possible to estimate the uncertainty contributed by each model to stacking result. The information about these distributions allows us to select an optimal set of stacking models, taking into account the domain knowledge. The probabilistic approach for stacking predictive models allows us to make risk assessment for the predictions that are important in a decision-making process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源