论文标题

具有给定色数的最小非颜色选择图

Minimum non-chromatic-choosable graphs with given chromatic number

论文作者

Zhu, Jialu, Zhu, Xuding

论文摘要

如果$χ(g)= CH(g)$,则图$ G $称为色度可选。一个自然的问题是确定$ K $ -CHROMATIC非$ K $ -Choosable图中的最小顶点。它由OHBA猜想,并由Noel,Reed和Wu证明,$ k $ -Chronic Graphs $ G $ with $ | v(g)| \ le 2k+1 $是$ K $ -Choosable。 $ | v(g)| $的上限很紧。众所周知,如果$ k $均匀,那么$ g = k_ {3 \ star(k/2+1),1 \ star(k/2-1)} $和$ g = k_ {4,2 \ star(k-1)$是$ k $ -Chromation图,带有$ | v(g)| = 2 k+2 $不是$ k $ -Choosable。这两个图的某些子图也非$ k $ - 可选。本文的主要结果是所有其他$ k $ -Chromation Graphs $ g $ with $ | v(g)| = 2 k+2 $是$ k $ -Choosable。特别是,如果$χ(g)$是奇数,$ | v(g)| \ le2χ(g)+2 $,然后$ g $是彩色选择的,由Noel猜想。

A graph $G$ is called chromatic-choosable if $χ(G)=ch(G)$. A natural problem is to determine the minimum number of vertices in a $k$-chromatic non-$k$-choosable graph. It was conjectured by Ohba, and proved by Noel, Reed and Wu that $k$-chromatic graphs $G$ with $|V(G)| \le 2k+1$ are $k$-choosable. This upper bound on $|V(G)|$ is tight. It is known that if $k$ is even, then $G=K_{3 \star (k/2+1), 1 \star (k/2-1)}$ and $G=K_{4, 2 \star (k-1)}$ are $k$-chromatic graphs with $|V(G)| =2 k+2$ that are not $k$-choosable. Some subgraphs of these two graphs are also non-$k$-choosable. The main result of this paper is that all other $k$-chromatic graphs $G$ with $|V(G)| =2 k+2$ are $k$-choosable. In particular, if $χ(G)$ is odd and $|V(G)| \le 2χ(G)+2$, then $G$ is chromatic-choosable, which was conjectured by Noel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源