论文标题

有界重复和有限宽度的CNF的分支程序的分裂能力

The splitting power of branching programs of bounded repetition and CNFs of bounded width

论文作者

Razgon, Igor

论文摘要

在本文中,我们研究了代表有界树宽的CNF的有界重复的句法分支程序。为此,我们介绍了两个新的结构图参数$ d $ - pathwidth和clique的保留$ d $ - pathwidth,由$ d-pw(g)$和$ d-cpw(g)$表示,其中$ g $是图形。我们表明,$ 2-CPW(g)\ leq O(tw(g)δ(g))$,其中$ tw(g)$和$δ(g)$分别是$ g $的树宽和最大度。使用此上限,我们证明了每个CNF $ψ$可以表示为两个尺寸$ 2^{o(δ(ψ)*TW(ψ)^2)} $的连接,其中$ tw(ψ)$是$ψ$的原始图的tw(ψ)$,每个可变的$ψ$ and $ψ$的原始图是$ψ$的$Δ(ψ)(ψ)(ψ) 接下来,我们使用$ d $ -Pathwdith获取单调分支程序的下限。特别是,我们考虑了句法非确定性的单调版本读取$ d $ t $ times分支程序(仅禁止负面文字作为边缘标签),并引入了进一步的限制,即每个计算路径最多都可以分配到最多$ d $ d $ read-once-once subpaths。我们称结果模型可分开的单调读取$ D $ times分支程序,并缩写为$ d $ -smnbps。对于无孤立顶点的每个图形$ g $,我们引入了cnf $ψ(g)$ WHSOSE子句为$(u \ vee e \ vee v)$ e = \ e = \ {u,v \} $的$ g $。我们证明,代表$ψ(g)$的$ d $ -smnbp至少$ω(c^{d-pw(g)})$,其中$ c =(8/7)^{1/12} $。我们使用此“通用”下限来获得CNFS $ψ(k_n)$的“混凝土”类别的指数下限。特别是,我们证明,对于$ 0 <a <1 $,$ n^{a} $ -smnbp的大小代表$ψ(k_n)$至少是$ c^{n^b} $,其中$ b $是一个任意的常数,因此$ a+b <1 $。从意义上讲,该下限$ψ(k_n)$可以用多大小$ n $ -smnbp表示。

In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters $d$-pathwidth and clique preserving $d$-pathwidth denoted by $d-pw(G)$ and $d-cpw(G)$ where $G$ is a graph. We show that $2-cpw(G) \leq O(tw(G) Δ(G))$ where $tw(G)$ and $Δ(G)$ are, respectively the treewidth and maximal degree of $G$. Using this upper bound, we demonstrate that each CNF $ψ$ can be represented as a conjunction of two OBDDs of size $2^{O(Δ(ψ)*tw(ψ)^2)}$ where $tw(ψ)$ is the treewidth of the primal graph of $ψ$ and each variable occurs in $ψ$ at most $Δ(ψ)$ times. Next we use $d$-pathwdith to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read $d$ times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most $d$ read-once subpaths. We call the resulting model separable monotone read $d$ times branching programs and abbreviate them $d$-SMNBPs. For each graph $G$ without isolated vertices, we introduce a CNF $ψ(G)$ whsose clauses are $(u \vee e \vee v)$ for each edge $e=\{u,v\}$ of $G$. We prove that a $d$-SMNBP representing $ψ(G)$ is of size at least $Ω(c^{d-pw(G)})$ where $c=(8/7)^{1/12}$. We use this 'generic' lower bound to obtain an exponential lower bound for a 'concrete' class of CNFs $ψ(K_n)$. In particular, we demonstrate that for each $0<a<1$, the size of $n^{a}$-SMNBP representing $ψ(K_n)$ is at least $c^{n^b}$ where $b$ is an arbitrary constant such that $a+b<1$. This lower bound is tight in the sense $ψ(K_n)$ can be represented by a poly-sized $n$-SMNBP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源