论文标题

COVID-19数据的统计建模:将广义添加剂模型置于工作

Statistical modelling of COVID-19 data: Putting Generalised Additive Models to work

论文作者

Fritz, Cornelius, De Nicola, Giacomo, Rave, Martje, Weigert, Maximilian, Khazaei, Yeganeh, Berger, Ursula, Küchenhoff, Helmut, Kauermann, Göran

论文摘要

在Covid-19大流行过程中,已多次使用广泛的添加剂模型(GAM),以获得重要的数据驱动见解。在本文中,我们进一步证实了游戏的成功故事,通过关注三个相关大流行有关的问题来证明它们的灵活性。首先,我们检查了不同年龄段的感染之间的互助,专注于学童。在这种情况下,我们得出了以下设置,在该设置下,参数估计值独立于(未知)案例检测比率,该比率在COVID-19-19监视数据中起重要作用。其次,我们对住院的发生率进行建模,该数据仅在时间延迟下可用。我们说明如何自然地将其作为偏移术语纳入GAM框架中的报告延迟如何纠正该报告延迟。第三,我们提出了一个多项式模型,用于每周入住重症监护病房(ICU),在该模型中,我们区分了199名患者,其他患者和空缺床的数量。在这三个示例中,我们旨在展示游戏的实用和“现成”适用性,以从现实世界中获得新的见解。

Over the course of the COVID-19 pandemic, Generalised Additive Models (GAMs) have been successfully employed on numerous occasions to obtain vital data-driven insights. In this paper we further substantiate the success story of GAMs, demonstrating their flexibility by focusing on three relevant pandemic-related issues. First, we examine the interdepency among infections in different age groups, concentrating on school children. In this context, we derive the setting under which parameter estimates are independent of the (unknown) case-detection ratio, which plays an important role in COVID-19 surveillance data. Second, we model the incidence of hospitalisations, for which data is only available with a temporal delay. We illustrate how correcting for this reporting delay through a nowcasting procedure can be naturally incorporated into the GAM framework as an offset term. Third, we propose a multinomial model for the weekly occupancy of intensive care units (ICU), where we distinguish between the number of COVID-19 patients, other patients and vacant beds. With these three examples, we aim to showcase the practical and "off-the-shelf" applicability of GAMs to gain new insights from real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源