论文标题

稀疏矩阵的有效代数两级Schwarz预处理

Efficient Algebraic Two-Level Schwarz Preconditioner For Sparse Matrices

论文作者

Daas, Hussam Al, Jolivet, Pierre, Rees, Tyrone

论文摘要

域分解方法是解决方程式稀疏线性系统的最有效效率之一。它们的有效性依赖于明智选择的粗糙空间。在过去的几年中,最初引入并从理论上被证明是有效的,对于自动伴侣操作员来说,光谱粗空间已提出,对于不确定和非自发接合运算符。本文提出了一个新的光谱粗糙空间,与大多数现有的光谱粗空间不同,该空间可以以完全代数的方式构建。我们介绍了Hermitian阳性明确对角线矩阵的理论收敛结果。在跨部社区中,与最先进的预处理的数值实验和比较表明,由此产生的两级Schwarz预处理效率是有效的,尤其是对于非自我选择的运营商而言。此外,在这种情况下,我们拟议的预定器优于最先进的预处理。

Domain decomposition methods are among the most efficient for solving sparse linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally introduced and theoretically proved to be efficient for self-adjoint operators, spectral coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators. This paper presents a new spectral coarse space that can be constructed in a fully-algebraic way unlike most existing spectral coarse spaces. We present theoretical convergence result for Hermitian positive definite diagonally dominant matrices. Numerical experiments and comparisons against state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz preconditioner is efficient especially for non-self-adjoint operators. Furthermore, in this case, our proposed preconditioner outperforms state-of-the-art preconditioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源