论文标题

在不同程度的发展网络上的流行病

Epidemics on evolving networks with varying degrees

论文作者

Sanhedrai, Hillel, Havlin, Shlomo

论文摘要

复杂网络上的流行病是过去几年中广泛研究的主题,这主要是由于上一次大流行事件。通常,真正的接触网络是动态的,因此已经在研究不断发展的网络的流行病上投入了很多努力。在这里,我们建议并研究一个基于不同程度的发展网络的模型,在每个时间步骤中,节点可能会根据给定的学位分布获得概率$ r $,新学位和新邻居,而不是其以前的邻居。我们通过分析发现,使用生成功能框架,流行阈值以及疾病宏观传播的概率,具体取决于重新启动率$ r $。我们的分析结果由数值模拟支持。我们发现,重新布线$ r $的影响具有不同程度分布的网络的质量不同。也就是说,在某些结构中,例如随机的常规网络,动力学会增强流行病的传播,而在其他结构中,诸如刻度释放动力学的动力学会减少扩展。此外,对于无标度网络,我们揭示了网络的快速动态,$ r = 1 $,将流行阈值更改为$ r <1 $的非零,而不是零,这与已知的$ r = 0 $的情况相似,即静态网络。最后,我们发现恢复时间一般分布的流行阈值也是如此。

Epidemics on complex networks is a widely investigated topic in the last few years, mainly due to the last pandemic events. Usually, real contact networks are dynamic, hence much effort has been invested in studying epidemics on evolving networks. Here we propose and study a model for evolving networks based on varying degrees, where at each time step a node might get, with probability $r$, a new degree and new neighbors according to a given degree distribution, instead of its former neighbors. We find analytically, using the generating functions framework, the epidemic threshold and the probability for a macroscopic spread of disease depending on the rewiring rate $r$. Our analytical results are supported by numerical simulations. We find surprisingly that the impact of the rewiring rate $r$ has qualitative different trends for networks having different degree distributions. That is, in some structures, such as random regular networks the dynamics enhances the epidemic spreading while in others such as scale free the dynamics reduces the spreading. In addition, for scale-free networks, we reveal that fast dynamics of the network, $r=1$, changes the epidemic threshold to nonzero rather than zero found for $r<1$, which is similar to the known case of $r=0$, i.e., a static network. Finally, we find the epidemic threshold also for a general distribution of the recovery time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源