论文标题

RestoredEt:低分辨率图像中对象检测的降解等效表示

RestoreDet: Degradation Equivariant Representation for Object Detection in Low Resolution Images

论文作者

Cui, Ziteng, Zhu, Yingying, Gu, Lin, Qi, Guo-Jun, Li, Xiaoxiao, Gao, Peng, Zhang, Zenghui, Harada, Tatsuya

论文摘要

图像恢复算法(例如超级分辨率(SR))是在退化图像中用于对象检测的必不可少的预处理模块。但是,这些算法中的大多数都认为降解是固定的,并且已知先验。当实际降解未知或与假设不同时,预处理模块和随之而来的高级任务(例如对象检测)都会失败。在这里,我们提出了一个新颖的框架RestoredEt,以检测低分辨率图像降解的对象。 RestoredEt利用下采样降解作为一种自我监管信号的一种转换,以探索针对各种分辨率和其他退化条件的模棱两可的表示。具体而言,我们通过编码和解码从一对原始和随机退化的图像中编码和解码降解转换来学习这种内在的视觉结构。该框架可以进一步利用高级SR体系结构,并具有任意分辨率恢复解码器,以从降级输入图像中重建原始对应关系。表示学习和对象检测均以端到端的培训方式共同优化。 RestoredEt是一个通用框架,可以在任何主流对象检测体系结构上实现。广泛的实验表明,与现有方法相比,我们基于Centernet的框架在面对变异降解情况时取得了卓越的性能。我们的代码很快就会发布。

Image restoration algorithms such as super resolution (SR) are indispensable pre-processing modules for object detection in degraded images. However, most of these algorithms assume the degradation is fixed and known a priori. When the real degradation is unknown or differs from assumption, both the pre-processing module and the consequent high-level task such as object detection would fail. Here, we propose a novel framework, RestoreDet, to detect objects in degraded low resolution images. RestoreDet utilizes the downsampling degradation as a kind of transformation for self-supervised signals to explore the equivariant representation against various resolutions and other degradation conditions. Specifically, we learn this intrinsic visual structure by encoding and decoding the degradation transformation from a pair of original and randomly degraded images. The framework could further take the advantage of advanced SR architectures with an arbitrary resolution restoring decoder to reconstruct the original correspondence from the degraded input image. Both the representation learning and object detection are optimized jointly in an end-to-end training fashion. RestoreDet is a generic framework that could be implemented on any mainstream object detection architectures. The extensive experiment shows that our framework based on CenterNet has achieved superior performance compared with existing methods when facing variant degradation situations. Our code would be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源