论文标题

GenLabel:使用生成模型的混合重新标记

GenLabel: Mixup Relabeling using Generative Models

论文作者

Sohn, Jy-yong, Shang, Liang, Chen, Hongxu, Moon, Jaekyun, Papailiopoulos, Dimitris, Lee, Kangwook

论文摘要

混音是一种数据增强方法,它通过混合一对输入数据来生成新的数据点。尽管混合通常会改善预测性能,但有时会降低性能。在本文中,我们首先通过理论和经验分析混合算法来确定这种现象的主要原因。为了解决这个问题,我们提出了Genlabel,这是一种简单而有效的重新标记算法,设计用于混合。特别是,GenLabel通过使用生成模型学习类辅助数据分布来帮助混合算法正确标记混合样品。通过广泛的理论和经验分析,我们表明,混合与Genlabel一起使用,可以有效地解决上述现象,从而提高概括性能和对抗性的鲁棒性。

Mixup is a data augmentation method that generates new data points by mixing a pair of input data. While mixup generally improves the prediction performance, it sometimes degrades the performance. In this paper, we first identify the main causes of this phenomenon by theoretically and empirically analyzing the mixup algorithm. To resolve this, we propose GenLabel, a simple yet effective relabeling algorithm designed for mixup. In particular, GenLabel helps the mixup algorithm correctly label mixup samples by learning the class-conditional data distribution using generative models. Via extensive theoretical and empirical analysis, we show that mixup, when used together with GenLabel, can effectively resolve the aforementioned phenomenon, improving the generalization performance and the adversarial robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源