论文标题
定期驾驶和混乱的裁缝四极拓扑绝缘子
Tailoring Quadrupole Topological Insulators with Periodic Driving and Disorder
论文作者
论文摘要
四极拓扑绝缘子(QTI)吸引了激烈的研究,作为用量化的四极力矩的对称性保护的物质的高阶高阶拓扑阶段的原型。已经在具有周期性结构的各种静态环境中报告了QTI的实现。在这里,我们从理论上研究了拓扑相变,并在具有无序的定期驱动系统中建立QTI阶段。在干净的极限中,Floquet QTI相源于由椭圆极化照射驱动的拓扑琐碎的带结构。更引人注目的是,从具有微不足道的拓扑结构的纯静态系统开始,我们揭开了一个有趣的QTI阶段,这需要同时存在混乱和周期性驾驶。此外,我们揭示了颗粒 - 孔对称性足以保护QTI。我们的工作不仅建立了设计QTI的新策略,而且还丰富了受对称保护的高阶拓扑机制。
The quadrupole topological insulator (QTI) has attracted intense studies as a prototype of symmetry-protected higher-order topological phases of matter with a quantized quadrupole moment. The realization of QTIs has been reported in various static settings with periodic structures. Here, we theoretically investigate topological phase transitions and establish the QTI phase in a periodically driven system with disorder. In the clean limit, the Floquet QTI phase emerges from a topologically trivial band structure driven by elliptically polarized irradiation. More strikingly, starting from a pure and static system with trivial topology, we unveil an intriguing QTI phase which necessitates the simultaneous presence of disorder and periodic driving. Furthermore, we reveal that particle-hole symmetry is sufficient to protect the QTI. Our work not only establishes a new strategy to design QTIs but also enriches the symmetry-protected mechanism of higher-order topology.