论文标题

具有组成数据方法的迁移研究:丹麦首都地区人口结构的案例研究

Migration studies with a Compositional Data approach: a case study of population structure in the Capital Region of Denmark

论文作者

Elío, Javier, Georgati, Marina, Hansen, Henning S., Keßler, Carsten

论文摘要

消除人口密度在人口地理中的影响的数据归一化是一个常见的程序,可能会带来不可感知的风险。在这方面,数据被限制为恒定总和,因此不是独立的观察,这是应用标准多元统计工具的基本要求。开发了组成数据(CODA)技术来解决标准统计工具与密切数据(即虚假相关性,范围之外的预测以及亚复合不连贯性)所遇到的问题,但它们仍然在现场不常用。因此,我们在本文中介绍了一个案例研究,我们在教区一级分析丹麦首都丹麦,西方移民和非西方移民的空间分布。通过应用CODA技术,我们能够识别该地区的空间种群隔离,我们已经认识到一些可用于解释住房价格变化的模式。我们的练习是尾巴技术潜力的一个基本示例,与标准统计程序相比,它可以产生更健壮和可靠的结果,但可以将其推广到具有更复杂结构的其他人群数据集。

Data normalization for removing the influence of population density in Population Geography is a common procedure that may come with an unperceived risk. In this regard, data are constrained to a constant sum and they are therefore not independent observations, a fundamental requirement for applying standard multivariate statistical tools. Compositional Data (CoDa) techniques were developed to solve the issues that the standard statistical tools have with close data (i.e., spurious correlations, predictions outside the range, and sub-compositional incoherence) but they are still not commonly used in the field. Hence, we present in this article a case study where we analyse at parish level the spatial distribution of Danes, Western migrants and non-Western migrants in the Capital region of Denmark. By applying CoDa techniques, we have been able to identify the spatial population segregation in the area and we have recognized some patterns that can be used for interpreting housing prices variations. Our exercise is a basic example of the potential of CoDa techniques, which generate more robust and reliable results than standard statistical procedures, but it can be generalized to other population datasets with more complex structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源